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ON THE PROBLEM OF THE STABILITY OF ONE-DIMENSIONAL UNBOUNDED ELASTIC SYSTEMS™

G.G. DENISOV, E.K. KUGUSHEVA and V.V. NOVIKOV

An elastic, spring-supported beam along which a point mass is moving, is
considered, and special features of the behaviour of such systems are
pointed out. The stability of the system point mass-beam is studied.

The velocity which, when exceeded, leads to instability of the beam is
determined, and its dependence on the parameters of the system are studied.

The motion of an inhomogeneity through the system is accompanied by the generation of
waves. The wave pattern can be separated into a stationary part containing "frozen" waves in
a coordinate system attached to the body, and non-stationary waves, appearing in the course
of transients or generated by the instability of the system in gquestion,

Examples of the study of stationary waves are numerous, and appear in various branches
of science., The study of non-stationary waves which can be used, in particular, in assessing
the stability or instability of the body-medium systems, has received much less attention.

Some fundamental problems related to the interaction of the body with a medium in relative
motion, were solved in /l/.

The investigation of stability of the linear, homogeneous unbounded system usually begins
with the dispersion equation, which gives the relation between the wave frequency and wave
vector with real components /2/. The appearance of an inhomogeneity in the system makes it
impossible to limit oneself to considering the dispersion egquation only. One of the exceptional
features of these problems is the lack of smoothness of the solution or of any of its derivatives
at the point at which the inhomogeneity occurs, and the solution should be sought in the class
of function vanishing at infinity (the components of the wave vector are complex). The
necessity may also arise of making the model more complicated by e.g. introducing frictional
forces.

Below, an example of an elastic, spring-supported beam is used to illustrate certain
aspects of the behavicur of the unbounded medium interacting with a moving body. One-
dimensicnal unbounded elastic systems were studied by a number of authors. The most interesting
papers are /3, 4/ where, in particular, an instability was discovered caused by relative motion
of the distributed mass of the pipe and & liguid flowing through it. 1In this connection the
instability can be expected to appear also when a discrete mass moves along the elastic system
(beam} . It is natural to assume that the growing perturbation should concentrate near the
position of the body whose oscillations impart energy to the beam, and should vanish {since
the system is linear) at infinity.

We shall consider the following model. A point mass m moves along an infinite beam
resting on an elastoviscous support. The motion of the mass consists of a motion with constant
velocity : along the Or axis, and of a motion aleng the Oy axis together with the beam
(Fig.1l) without separating from it. The behaviour of the beam is studied with reference to
the 0%y system of coordinates moving along the  axis with velocity v. i.e. ¥ = .- 1. The
equation of beam flexure and the conditions for matching the sclution at the position where
the point mass appears, after changing to dimensionless coordinates, have the following form:
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In addition, the solution of the problem must satisfy the condition of boundedness when
r & {(—oc, o0).

Here the time and length scales are given, respectively, by {p(4dy't and (Elihan’s, EI is
the flexural rigidity, and p is the mass per unit length of the beam. The parameter 1y
characterizes the friction in the elastic support, and d describes its elastic properties, g
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is acceleration due to gravity, and W, (§, 1) and W_( # are the flexures of the beam to the
left and right of the moving mass, respectively.
The solution of problem (1}, (2) represents a super-
position of the stationary W,(}) and non-stationary flexure,

¥ which we shall denote in what follows by Wi, 1. The stationary
(:} profile of the beam is described by the expression
¥ z
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The quantities e, by are given by the equation
A 2R — RvA My = 0 (4)
whose real roots have the form A; o= —adib, Ay ¢ = a ib,
_ 1— 2\t 1402\
when k=0, we have a——-(——;———) ' b#=§_=( 7 ) .

In the case when v«1 the beam profile is determined by relations (3). As ¢~ 1 (the
velocity approaches its critical value adopted here as the scale of velocity o = (41E/p%'s /5/,
the beam flexure increases without limit. When ¢>1, the problem has no solutions vanishing
at infinity.

Both W,, (8} and W, () represent the sum of four sinusoidal functions. To find all con-
stants entering W, and W,.. the condition that the sclution merge at the point E=0 is
insufficient, i.e. the staticnary flexure is not defined unigquely. To make the solution unigue,
we must change the formulation of the problem. We can, in particular, formulaté certain
supplementary conditions for W, (f). In the present case it is pertinent to use the principle
of limit absorption /6/. To do this, we bring the friction into the discussion (damping at
the support). The friction separates from the solution the terms decaying and growing at
infinity, and we eliminate the latter. We can also obtain a unique sclution for the conservative
case by a passage to the limit k-0

Fig.2 shows the stationary profile of the beam at various values of v The sharp change
{for small h) in the symmetric pattern of the stationary flexure at r< ! to the asymmetric
pattern at >1. merits attention. The calculations were carried out for k= 0.05  Note that
similar graphs were obtained in /8/, though the beam stability was not discussed either in
these, nor in any other papers familiar to the authors. Thus the guestion of realizing the
stationary solutions obtained remains open.

Let us now consider the non-staticnary solution of the problem (1)}, (2). The sclution is
sought in the form Wi . n = UM gubstituting Wiy into (1}, we obtain
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In general, the four complex roocts 7;. - 1.2 3,4) have at least one roct with a positive,
and one with negative real part, since the sum of the roots is zerc by virtue of the fact
that a term with »* is missing from (5},

Three different versions of the distribution of the
rocts irn the complex plane are possible, relative to the
wmw imaginary axis. In the first versicn the roots are on
one side, in the second three roots are on the other side,
N\ and finally we have two roots in each half-plane.

70 Let us consider the last case, assuming, to be
specific, that the real parts of the roots 1}, and 1%, are
negative, and those of . and }, are positive. The
solution of (1) satisfying the conditicn for vanishing
~-11g - [ at infinity, takes the form

L
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-10 By virtue cf the linear character of the system, the
load P does not appear, either in the equations of motion,
or in the condition for matching the non-stationary scl-
utions. The influence of the load on the non-stationary
=20 motions manifests itself in terms of the mass M== 0. When
M= 0, the equations in deviations have no singularities
when &= 0, therefore the elastic beam, regarded as a
dissipative, load~free system, is stable.

The conditions for mathcing (2) lead tc a hcmogeneous system of algebraic eguations in
A, 4, B, F. Eguating tc zerc the determinant cf this system we obtain the "freguency'" eguation

Fig.2
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When M=0, the spectrum of the eigenfrequencies of the system is mixed, and point
frequencies are found from the conditien @
M=A )
determining the stability of the system. Solving Eq.(5) under this condition, for specific
values of the parameters appearing in it, we can determine the stability of the stationary
profile of the beam under the perturbations caused by the moving mass, from the sign of the
real part of the roots p. Such an approach, however, is cumbersome and not very effective.

In the present case the method of D-decomposition /9, 10/ is found to be suitable.
Departing, for the time being, from the physical meaning of the problem, we shall regard M as
a complex parameter and map the straight line p = iv.w & (—eo. c) onto the complex plane M. We
solve (5) for a certain value o= w, and having sorted out #; obtained in accordance with
the signs of their real parts, we substitute them into condition (6) and then find M (w,).
Here, as when determining the uniqueness of the stationary solution, we must take into account
the friction (ks 0). no matter how small, since it is only when it is present, that the roots
A; at p=iv acquire real parts and can be sorted out. By carrying out the calculatjons for
different we (—o. ), we obtain the curve M (v) (the boundary of the D-decomposition) separat-
ing the complex plane M into regions with different numbers of characteristic indices p with
positive real parts. When M have positive real values belonging to the region in which all
Rep < 0. the system is stable. It becomes unstable, when the value of M is taken from the
region in which at least one Rep>( From (5) and (6) it follows that the boundary of D-
decomposition is symmetrical abocut the Re M axis.

The fcllowing cases are possible, depending on the value of the parameter ¢ (Fig.3):
r < 1; the curve Mo does not intersect the Re M axis; ¢ > 1: the curve ¥V (w) intersects the
20 Re V/ axis at one point JM,y). When r decreases,
the point ¥, moves to the right along the ReV
axis and M,— « as r— 1. When the second parameter

of the problem h increases, M, also increases
without affecting the gualitative behaviour of the
Re M curve .V {w;.

7 We have assumed in the above discussion a
specific distribution of the roots of (5) in the
complex rlane, namely that of twc roots on each
\'. side c¢f the imaginary axis. 1In other cases, when a
L different possikle distribution of the rocts is
cbtained, Eq.{6) changes its form and becomes
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In the numerical program for computing the boundary of D~decompecsition, we have taken
into account all possible distributicns of the roots ;. therefore the results discussed here
are guite general.

Using the rule of hatching the boundary cf D-deccmposition (the hatching indicates the
side cof the boundary converted intc a region with a larger number cf roots with Rep< . we
conclude that the number of rcots with positive real parts is smallest in the region D, (Fig.
3), i.e. the range of values of ReM|[0. M,) belengs possikly to the domain of stability of the
system.

We shall show that the stationary profile of the bear is stable for fairly low values of
the mass M; therefocre D, represents the domain of stability of the system.

With this purpose in mind, we shall use the equaticns of mction and the matching conditions
in the coordinate system attached tc the bear
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We assume that the function W(z. 1) is continuous on the set =z.t together with its first
and second derivative. The solution of the problem must decay at infinity, therefore, in what
follows, we shall assume that W (z. 1) decreases as z — +o at least as rapidly as exp (—alz|)
(z is a positive number.

In studying the stability we take the following functional as a measure of the perturba-
tion (a prime and a dot denote differentiation with respect to z and t respectively, and a
bar denotes a complex conjugate):

s, WYy =

T+ W 4+ Wi dr L sup 01T
X
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and consider the positive definite functional
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admitting an infinitesimal upper bound. The latter follows from the relation (M is a positive
number) . Coge
H (W, W) < max {M. 1}s(W. W)
At some fixed value of the parameter h there exists a finite neighbourhood of the point
M =0 at which the functional H#H (W. W', decreases with time by virtue of Eq.(8) and the
conditions at the point z =t (9). 1Indeed, the condition

H o= —20 { W dr— e i @ 2 ol =TT @0 el 7)) | <0
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clearly holds when the inequality

2h ( T g > oM max (i W74 e P L (1

X
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holds. The integral on the left-hand side of the ineguality is positive, and bounded by virtue
of the exponential decrease in the function W (z.1) as r— +oc. The expressions within the
braces are finite, since the functions in them are bounded for s (—x.ox)

Since the conditions of the theorem of the straight Lyapunov method on stability /11/
hcld, we conclude that the system in question is stable for fairly small values of the para-
meter M. This, together with the D-decomposition of the complex M plane, leads to. the final
result: D, is the domain of stability, therefore the "stationary" profile of the beam is
stable at values of ¥ (regarded as a physical parameter) from the interval [v. M,  The
conditions of stability (10} can easily be explained in physical terms. On the left we have
a term reducing the energy of the system by virtue of the dissipation in the viscoelastic
support, and on the right we have the term increasing the energy due to the oscillation of
the mass M. When h increases while M and ¢ decrease, the stability of the system increases.

We note that the inhomogeneity in the unbounded system can be caused not only by the
point mass, but also by other factors (e.g. by an elastic point force). However, not every
inhomogeneity arising during the motion along the beam can excite waves whose amplitudes
increase with time. 1In particular, in the case of an elastic point force such wave excitation
is not observed at any value of » This can be shown using the direct Lyapunov method by
just changing the form of the functional # (W. W’}

Fig.4 shows the boundary 1, 2, 3 of the domain of stability in the mass-velocity plane
for the values of the parameter 4= C.1;05: 09 The domain of stability lies to the left of
the curve M (1) whose asymptotes are the straight line ¢=1, and the 0O axis. At small
values of the mass the system is stable over a wide range of velocities [0, 1,). An increase in
M is accompanied by a reduction in the domain of stability, and ., - 1.
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Fig.5 shows the form of the oscillations of the beam at M =M, i.e. at the boundary of
the domain of stability. The values «t =0, n/4, #/2, 34 correspond to the curves l1—4., A wave
appears near the mass M, moving in a direction opposite to thatof the mass. However, the
directions of the motions of the mass nad the wave with respect to the beam are the same.

We note that the system in gquestion can be used as a model of a pipe with a flow of fluig,
made thicker at some place {(increased mass), in the case when the ratio of the running mass of
the pipe and the fluid is small. If the ratio is not small, then additional terms must be
introduced in (1) /3/.

REFERENCES

1. GAPONOV-FREKHOV A.V,, DOLINA I.S. and OSTROVSKII L.A., Anomalous Doppler effect and
radiative instability of the motion of oscillators in hydrodynamics. Dokl. Akad. Nauk
SSSR, 268, 4, 1983,

2. LIFSHITZ E.M. and PITAYEVSKII L.P,, Physical Kinetics. X, Moscow, Nauka, 1879,

3. BOLOTIN V.V., Finite deformatations of flexible pipes. Trudy MEI, 19, 1956.

4. ROTH W., Instabilitat durchstromter Rohre. Ing. Arch., B. 33, H. 4, 1964.

5. PANOVKO YA.G. and GUBANOVA I.I., Stability and Oscillations of Elastic Systems. Moscow,
Nauka, 1979.

6. TIKHONOV A.N, and SAMARSKII A.A., Equations of Mathematical Physics. Moscow, Gostekhizdat,
1953.

7. FRYBA L., Vibration of Sclids and Structures under Moving Loads. Groningen: Noordhoff
Internat. Publ., 1972,

8. STADLER W. and SHREEVES R.W., The transient and steady-state response of the infinite
Bernoulli-Euler beam with damping and elastic foundation. Quart. J. Mech. and Appl. Math.,
23, 2, 1%70.

9. NEIMARK YU.I., Stability of Linearized Systems. Leningrad. LKVVIA, 1949,

10. NEIMARK YU.I1., Dynamic Systems and Control Processes. Moscow, Nauka, 1978,

11. MOVCHAN A.A., On the direct Lyapuncv method in problems of the stability of elastic systems.
PMM 23, 3, 1959.

Translated by L.K.

PMM U.S5.5.R.,V0l.49,Nc.4,pp.527-54C,19€5 0021-8928/85 $10.00+0.00
Printed in Great Britain Pergamor. Journals Ltd.

AVERAGED DESCRIPTION OF THE OSCILLATIONS IN A ONE-DIMENSIONAL,
RANDOMLY INHOMOGENEOUS MEDIUM™

A.YU. BELYAEV

The Cauchy problem fcr a wave equation with coefficients deperding randomly
on the spatial coordinate is considered. An equation describing the
evelution of the expectation of the solution is derived assuming that the
fluctuations of the coefficients and the correlation radius are small.

The averaged equation, unlike the initial equation, is irreversible with
respect tc time, and has the form of a one-dimensional equation of motion

of a viscoelastic material. The coefficient of effective viscosity obtained
is found to be proporticnal te the intensity of fluctuations of the

random characteristics of the inhomogeneous medium.

Numerous problems of the propagation of elastic, electromagentic and other waves in an
inhomogeneous medium, reduce to solving the equation

9% [l du
P (z) 2 ='3;‘{a(t)7g-] 1)

with initial data for ¢=10. If the functicns p(s) and () characterizing the properties

of the medium oscillate rapidly, then the prcblem arises of producing an averaged description
of the wave propagation process. In randomly inhomogenecus continua the non-coherent character
of wave dispersion by inhomogeneities of the medium produces a decay of solutions, which

leads to the irreversibility of the averaged equations.
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